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C

The performance of a volatile corro-

sion inhibitor (VCI) on steel via col-

loid formation through its reaction 

with Ca and Mg ions in seawater was 

studied. The physical and chemical 

properties of seawater, with and 

without the VCI at different concen-

trations, were determined. The VCI’s 

effciency was assessed, and its suit-

ability for the steel system in sea-

water was indicated at an optimal 

concentration of 0.05%. 

Corrosion and degradation of materials 

are pernicious problems that affect envi-

ronment quality, industry efficiency, and 

infrastructure assets.1-2 All of these diverse 

facilities and installations require prod-

ucts, methods, and techniques to protect 

against, mitigate, and prevent corrosion 

damage. Volatile corrosion inhibitors 

(VCIs) are one of the modern technologies 

used to manage corrosion for the benefit of 

the global economy.3

Seawater Corrosion 

The sea is a dynamic system in perma-

nent motion. Complex surface currents 

and winds blowing over its surface gener-

ate waves that reach the coast and its 

industrial facilities located there.

Seawater is a solution consisting of 

many salts and numerous organic and inor-

ganic particles in suspension. Its main 

characteristics are salinity and chlorinity, 

and from the corrosion point of view, dis-

solved oxygen (DO) content that ranges 

from 4 to 8 mg/L depending on tempera-

ture and depth. Seawater’s minor compo-

nents include dissolved gases—carbon 

dioxide (CO2), ammonia (NH3), and hydro-

gen sulfide (H2S)—from urban sewage con-

tamination. The oceans house algae, bacte-

ria, and phytoplankton that generate about 

half of the oxygen in the atmosphere.

Ocean surface salinity is determined by 

the balance between water lost from evapo-

ration and water gained through precipita-

tion. The salt concentration, particularly 

sodium chloride (NaCl), varies from 2.0 to 

3.5% according to the sea location and 

added amounts of fresh river water. For 

instance, salinity of the Red Sea (an 

enclosed basin) at high summer tempera-

tures is 4.1%, but salinity of the Baltic Sea is 

~2.0% since many rivers feed into it.

Seawater is slightly alkaline, with a pH 

of ~8.0. When it is contaminated by acids 

(i.e., in coastal regions near power stations 

burning fossil fuels and generating acidic 

rains), the pH can drop to 6.0.

Corrosion Inhibitors

In recent years, the use of VCIs has rap-

idly expanded worldwide for numerous 

technological and industrial applications 

such as cooling water systems;4 steel-rein-

forced concrete; protected storage of mili-

tary and electronic equipment;5 acid pick-

ling and cleaning;6 the oil and gas industry; 

as additives to coatings, paints, and elasto-

mers; and for corrosion avoidance in oil 

pipelines.7-8 The importance and relevance 

of VCI technologies are evident by the 

many patents gathered in a recently pub-

lished review.9
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VCIs slow the rate of corrosion reac-

tions when added in relatively small 

amounts to water. They are classified into 

three groups:

• Anodic inhibitors, which retard the 

anodic corrosion reactions by form-

ing passive films

• Cathodic inhibitors, which repress 

the corrosion reaction (e.g., by reduc-

ing DO)

• Adsorption inhibitors,  such as 

amines, oils, and waxes, which are 

adsorbed on the steel surface to form 

a thin protective film that prevents 

metal dissolution

A Colloidal Corrosion 

Inhibitor

A polymolecular VCI, VAPPRO 844†, 

was studied, which is added to seawater as 

a powder, and then it converts into a col-

loidal suspension with nanoparticles dis-

persed in the water. These nanoparticles 

are adsorbed on the steel surfaces and a 

thin, protective film is formed. The perfor-

mance of this inhibitor depends on physi-

cal, biological, and chemical factors. The 

factors under analysis for this study 

included solution hardness, alkalinity, con-

ductivity, and pH. Other factors, such as 

DO, contribute as well but were not within 

the scope of this investigation.

It is proposed that the mechanism of 

colloidal formation functions by combin-

ing the inhibitor (CI) with Ca2+ ions present 

in seawater to form an inert colloidal par-

ticle that is cationic in nature, as shown in 

Equation (1): 

 Ca2+ + CI → Ca2+-CI complex (1)

The formed colloidal particles adhere 

to the metal and prevent the onset of corro-

sion by preventing the loss of electrons. 

This causes the electrochemical cell to be 

incomplete and corrosion cannot occur.

The VCI powder was specially devel-

oped to combat corrosion on mild steel and 

iron structures in stagnant seawater found 

in ballast tanks of ships and rigs. In this 

study, the VCI was tested to establish its 

effectiveness and to determine the changes 

in both physical and chemical properties of 

the seawater, which include pH, total hard-

ness, alkalinity, and total dissolved solids/

conductivity, at different VCI concentra-

tions. The purpose was to find the opti-

mum VCI concentration and provide rec-

ommendations on how the effectiveness of 

the inhibitor could be improved to reduce 

corrosion.

Results and Discussion 

Weight Loss
The practices recommended in ASTM 

G3110 and NACE TM016911 were followed 

for evaluating the steel corrosion resis-

tance. The measured weights for mild steel 

show that at 0.05% concentration, there 

was the least weight loss, indicating the 

least corrosion. Over the period of 26 days, 

the steel control specimen in seawater 

without inhibitor had lost 0.58 g, while 

those specimens in seawater with inhibitor 

had reduced metal loss—~0.10 g on aver-

age. This was even lower than the tap water 

control of 0.15-g metal loss. The most effec-

tive VCI concentration was 0.05%, as the 

metal loss was only 0.03 g (Table 1).

The inhibition efficiency (IE) was deter-

mined using Equation (2):
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where Mu and Mi are the weight loss of the 

steel in uninhibited and inhibited solu-

tions, respectively.

Mild Steel Corrosion 

Reactions 

A drop in solution hardness was ob-

served; however, this was not reflected in 

the conductivity. This means that ions 

other than Ca2+ and Mg2+ had interacted in 

the seawater. The proposed reactions are 

shown in Equations (3) and (4):

CI + Ca2+/Mg2+ → Gelatinous

 white precipitate (3)                   

CI + Ca2+/Mg2+ + Fe2+/Fe3+ → Insoluble

 complex (4)                   

As iron underwent the anodic reaction 

in Equation (5), the cathodic reaction 

expressed the oxygen reduction reaction 

under acidic conditions shown in Equation 

(6) and under neutral alkaline conditions in 

Equation (7): 

 Fe2+ → Fe3+ + e– (5)                          

 O2 + 4H+ + 4e– → 2H2O (6) 

 O2 + 2H2O + 4e– → 4OH– (7)

In all of these reactions, the reduction 

of the hydrogen ions or the production of 

hydroxyl ions raised the pH of the electro-

lyte in fresh water. However, in seawater, 

the cathodic reduction observed by Equa-

tions (8) and (9) produced a slightly alka-

line surface condition, which precipitated 

calcium carbonate (CaCO3) and magne-

sium hydroxide [Mg(OH)2]:

 Ca2+ + HCO3
– + OH– → H2O + CaCO3 (8)                            

 Mg2+ + 2OH– → Mg(OH)2 (9)                                

On mild steel pieces in seawater with 

0.25 and 0.10% VCI and a pH range of 5 to 6, 

dark pits were observed on the metal 

toward the end of the analysis. These pits 

were much more likely to be formed at the 

anodic area due to the formation of the pre-

cipitate layer.

Steel pieces in seawater with 0.025% or 

less VCI and a pH of 7.5 to 8.0 started to 

corrode. Thus, the inhibitor was not benefi-

cial at such low concentrations.

TABLE 1.  INHIBITION 

EFFICIENCY OF VCI IN 

SEAWATER

Inhibitor 
Concentration 
(%)

Metal 
Loss  
(g)

Inhibition 
Effciency 
(%)

— 0.58 —

0.0125 0.19 22.6

0.025 0.11 81.0

0.05 0.03 94.8

0.10 0.05 91.3

0.25 0.09 84.4

†Trade name.
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FIGURE 1  Mild steel samples exposed to seawater and 0.05% VCI 844 before (a) and after (b) 

immersion in ferroxyl indicator.

FIGURE 2  Petroleum transportation tanker showing holds.

With 0.05% VCI in seawater, the pH 

range was ~7.0. Immersion in a ferroxyl 

indicator and weight loss tests demon-

strated that there was optimum corrosion 

inhibition at this concentration, although 

the metal had some staining  (Figure 1).

Applications
About 4,400 petroleum transportation 

tankers from oil-producing countries cross 

the oceans and seas of the world to energy-

consuming countries. If, on average, each 

tanker has 10 holds, it means 44,000 holds 

require a VCI for their ballast seawater.

Petroleum steel tankers (Figure 2) are 

cheaper and more efficient than submarine 

pipelines installed on the seabed for oil 

transportation. For their trip back, the 

tanker holds are filled with seawater to pro-

vide adequate stability (Figure 3). A VCI is 

added to this ballast water. Pipes, storage 

tanks (Figure 4), and pumps using water for 

hydrotesting also can be dosed with the 

same VCI.

Conclusions
From the experimental observations, 

mild steel was well protected with a VCI 

concentration of 0.05%, showing only slight 

staining after a period of 26 days.

Changes in seawater parameters were 

observed when the VCI powder was intro-

duced. It contributed to the increase of 

conductivity when introduced into the 

solution; however, when it reacted with the 

ions in seawater to form colloids, the con-

ductivity dropped. The introduction of the 

VCI made the solution more acidic due to 

the mild acidic properties of this particu-

lar VCI.

Higher concentrations of inhibitor 

reduced the alkalinity of the seawater. For 

solution hardness, the calcium and magne-

sium ions were consumed in the reaction. 

This confirmed that the VCI powder fol-

lowed the proposed reaction mechanism to 

form colloids.

(a) (b)
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heat-activated technology lubricants, 
molecular reaction surfaces, concrete 
rebar inhibitors, vapor biocorrosion inhibi-
tors, and colloidal corrosion inhibitors.
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FIGURE 4  Fire protection water storage tank.

FIGURE 3  Ballast water tank.
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